3.107 \(\int \frac {x^2 (a+b \cosh ^{-1}(c x))}{\sqrt {d-c^2 d x^2}} \, dx\)

Optimal. Leaf size=132 \[ -\frac {x \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{2 c^2 d}+\frac {\sqrt {c x-1} \sqrt {c x+1} \left (a+b \cosh ^{-1}(c x)\right )^2}{4 b c^3 \sqrt {d-c^2 d x^2}}-\frac {b x^2 \sqrt {c x-1} \sqrt {c x+1}}{4 c \sqrt {d-c^2 d x^2}} \]

[Out]

-1/4*b*x^2*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c/(-c^2*d*x^2+d)^(1/2)+1/4*(a+b*arccosh(c*x))^2*(c*x-1)^(1/2)*(c*x+1)^(
1/2)/b/c^3/(-c^2*d*x^2+d)^(1/2)-1/2*x*(a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)/c^2/d

________________________________________________________________________________________

Rubi [A]  time = 0.40, antiderivative size = 140, normalized size of antiderivative = 1.06, number of steps used = 4, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {5798, 5759, 5676, 30} \[ -\frac {x (1-c x) (c x+1) \left (a+b \cosh ^{-1}(c x)\right )}{2 c^2 \sqrt {d-c^2 d x^2}}+\frac {\sqrt {c x-1} \sqrt {c x+1} \left (a+b \cosh ^{-1}(c x)\right )^2}{4 b c^3 \sqrt {d-c^2 d x^2}}-\frac {b x^2 \sqrt {c x-1} \sqrt {c x+1}}{4 c \sqrt {d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*(a + b*ArcCosh[c*x]))/Sqrt[d - c^2*d*x^2],x]

[Out]

-(b*x^2*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(4*c*Sqrt[d - c^2*d*x^2]) - (x*(1 - c*x)*(1 + c*x)*(a + b*ArcCosh[c*x]))
/(2*c^2*Sqrt[d - c^2*d*x^2]) + (Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*ArcCosh[c*x])^2)/(4*b*c^3*Sqrt[d - c^2*d*x
^2])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 5676

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)]), x_Symbol]
 :> Simp[(a + b*ArcCosh[c*x])^(n + 1)/(b*c*Sqrt[-(d1*d2)]*(n + 1)), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n},
x] && EqQ[e1, c*d1] && EqQ[e2, -(c*d2)] && GtQ[d1, 0] && LtQ[d2, 0] && NeQ[n, -1]

Rule 5759

Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_))/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_
.)*(x_)]), x_Symbol] :> Simp[(f*(f*x)^(m - 1)*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]*(a + b*ArcCosh[c*x])^n)/(e1*e2*m
), x] + (Dist[(f^2*(m - 1))/(c^2*m), Int[((f*x)^(m - 2)*(a + b*ArcCosh[c*x])^n)/(Sqrt[d1 + e1*x]*Sqrt[d2 + e2*
x]), x], x] + Dist[(b*f*n*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])/(c*d1*d2*m*Sqrt[1 + c*x]*Sqrt[-1 + c*x]), Int[(f*x)
^(m - 1)*(a + b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d1, e1, d2, e2, f}, x] && EqQ[e1 - c*d1, 0]
&& EqQ[e2 + c*d2, 0] && GtQ[n, 0] && GtQ[m, 1] && IntegerQ[m]

Rule 5798

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist
[((-d)^IntPart[p]*(d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^m*(1 + c*
x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[c^2*d + e, 0]
 &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {x^2 \left (a+b \cosh ^{-1}(c x)\right )}{\sqrt {d-c^2 d x^2}} \, dx &=\frac {\left (\sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {x^2 \left (a+b \cosh ^{-1}(c x)\right )}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx}{\sqrt {d-c^2 d x^2}}\\ &=-\frac {x (1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )}{2 c^2 \sqrt {d-c^2 d x^2}}+\frac {\left (\sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {a+b \cosh ^{-1}(c x)}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx}{2 c^2 \sqrt {d-c^2 d x^2}}-\frac {\left (b \sqrt {-1+c x} \sqrt {1+c x}\right ) \int x \, dx}{2 c \sqrt {d-c^2 d x^2}}\\ &=-\frac {b x^2 \sqrt {-1+c x} \sqrt {1+c x}}{4 c \sqrt {d-c^2 d x^2}}-\frac {x (1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )}{2 c^2 \sqrt {d-c^2 d x^2}}+\frac {\sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )^2}{4 b c^3 \sqrt {d-c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.67, size = 141, normalized size = 1.07 \[ \frac {-\frac {4 a c x \sqrt {d-c^2 d x^2}}{d}-\frac {4 a \tan ^{-1}\left (\frac {c x \sqrt {d-c^2 d x^2}}{\sqrt {d} \left (c^2 x^2-1\right )}\right )}{\sqrt {d}}+\frac {b \sqrt {\frac {c x-1}{c x+1}} (c x+1) \left (2 \cosh ^{-1}(c x) \left (\cosh ^{-1}(c x)+\sinh \left (2 \cosh ^{-1}(c x)\right )\right )-\cosh \left (2 \cosh ^{-1}(c x)\right )\right )}{\sqrt {d-c^2 d x^2}}}{8 c^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^2*(a + b*ArcCosh[c*x]))/Sqrt[d - c^2*d*x^2],x]

[Out]

((-4*a*c*x*Sqrt[d - c^2*d*x^2])/d - (4*a*ArcTan[(c*x*Sqrt[d - c^2*d*x^2])/(Sqrt[d]*(-1 + c^2*x^2))])/Sqrt[d] +
 (b*Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)*(-Cosh[2*ArcCosh[c*x]] + 2*ArcCosh[c*x]*(ArcCosh[c*x] + Sinh[2*ArcCos
h[c*x]])))/Sqrt[d - c^2*d*x^2])/(8*c^3)

________________________________________________________________________________________

fricas [F]  time = 0.57, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {-c^{2} d x^{2} + d} {\left (b x^{2} \operatorname {arcosh}\left (c x\right ) + a x^{2}\right )}}{c^{2} d x^{2} - d}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c^2*d*x^2 + d)*(b*x^2*arccosh(c*x) + a*x^2)/(c^2*d*x^2 - d), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )} x^{2}}{\sqrt {-c^{2} d x^{2} + d}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arccosh(c*x) + a)*x^2/sqrt(-c^2*d*x^2 + d), x)

________________________________________________________________________________________

maple [B]  time = 0.53, size = 291, normalized size = 2.20 \[ -\frac {a x \sqrt {-c^{2} d \,x^{2}+d}}{2 c^{2} d}+\frac {a \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{2 c^{2} \sqrt {c^{2} d}}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \mathrm {arccosh}\left (c x \right )^{2}}{4 d \,c^{3} \left (c^{2} x^{2}-1\right )}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right ) x^{3}}{2 d \left (c^{2} x^{2}-1\right )}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x +1}\, \sqrt {c x -1}\, x^{2}}{4 d c \left (c^{2} x^{2}-1\right )}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right ) x}{2 d \,c^{2} \left (c^{2} x^{2}-1\right )}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}}{8 d \,c^{3} \left (c^{2} x^{2}-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x)

[Out]

-1/2*a*x/c^2/d*(-c^2*d*x^2+d)^(1/2)+1/2*a/c^2/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))-1/4*b
*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d/c^3/(c^2*x^2-1)*arccosh(c*x)^2-1/2*b*(-d*(c^2*x^2-1))^(1
/2)/d/(c^2*x^2-1)*arccosh(c*x)*x^3+1/4*b*(-d*(c^2*x^2-1))^(1/2)/d/c/(c^2*x^2-1)*(c*x+1)^(1/2)*(c*x-1)^(1/2)*x^
2+1/2*b*(-d*(c^2*x^2-1))^(1/2)/d/c^2/(c^2*x^2-1)*arccosh(c*x)*x-1/8*b*(-d*(c^2*x^2-1))^(1/2)/d/c^3/(c^2*x^2-1)
*(c*x-1)^(1/2)*(c*x+1)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {1}{2} \, a {\left (\frac {\sqrt {-c^{2} d x^{2} + d} x}{c^{2} d} - \frac {\arcsin \left (c x\right )}{c^{3} \sqrt {d}}\right )} + b \int \frac {x^{2} \log \left (c x + \sqrt {c x + 1} \sqrt {c x - 1}\right )}{\sqrt {-c^{2} d x^{2} + d}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

-1/2*a*(sqrt(-c^2*d*x^2 + d)*x/(c^2*d) - arcsin(c*x)/(c^3*sqrt(d))) + b*integrate(x^2*log(c*x + sqrt(c*x + 1)*
sqrt(c*x - 1))/sqrt(-c^2*d*x^2 + d), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x^2\,\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}{\sqrt {d-c^2\,d\,x^2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2*(a + b*acosh(c*x)))/(d - c^2*d*x^2)^(1/2),x)

[Out]

int((x^2*(a + b*acosh(c*x)))/(d - c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2} \left (a + b \operatorname {acosh}{\left (c x \right )}\right )}{\sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(a+b*acosh(c*x))/(-c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(x**2*(a + b*acosh(c*x))/sqrt(-d*(c*x - 1)*(c*x + 1)), x)

________________________________________________________________________________________